TreeMap 源码解读(JDK 1.8)

  1. 1. 概述
  2. 2. 源码

概述

TreeMap 从名字中可以看出应该是跟树有关,没错,TreeMap 便是直接使用红黑树实现的,而 HashMap 则是当链表数组和某个链表同时达到一定长度时才会将链表转为红黑树。同时 TreeMap 还是有序的,这就要求 Key 必须是可以进行比较的!即实现 Comparable 接口,否则在插入或者查询时会抛出类型转换异常,接下来看源码。

源码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
public class TreeMap<K,V>
extends AbstractMap<K,V>
implements NavigableMap<K,V>, Cloneable, java.io.Serializable
{
/**
* key 的比较器
*
* @serial
*/
private final Comparator<? super K> comparator;

/**
* 红黑树的根节点
*/
private transient Entry<K,V> root;

/**
* key value 的映射个数
*/
private transient int size = 0;

/**
* 数据结构被修改的次数
*/
private transient int modCount = 0;

/**
* 默认的构造函数
*/
public TreeMap() {
comparator = null;
}

/**
* 指定 key 的 comparator
*/
public TreeMap(Comparator<? super K> comparator) {
this.comparator = comparator;
}

/**
* 构造函数,将参数 map 中的数据导入到当前 map 中,不设置 comparator
*/
public TreeMap(Map<? extends K, ? extends V> m) {
comparator = null;
putAll(m);
}

/**
* 构造函数,传入一个 sortedMap,将参数中的数据跟 comparator 都设置到
* 当前 map
*/
public TreeMap(SortedMap<K, ? extends V> m) {
comparator = m.comparator();
try {
buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
}


// 以下是一些查询操作

/**
* 返回当前 map 的大小
*/
public int size() {
return size;
}

/**
* 判断参数 key 是否在当前 map 中存在
*/
public boolean containsKey(Object key) {
return getEntry(key) != null;
}

/**
* 判断参数 value 是否在当前 map 中存在
*/
public boolean containsValue(Object value) {
// 从小到大遍历 treeMap
for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
if (valEquals(value, e.value))
return true;
return false;
}

/**
* 通过 key 查询 value
*/
public V get(Object key) {
// 通过 key 查询节点
Entry<K,V> p = getEntry(key);
// 如果节点不为空返回节点保存的 value,否则返回空
return (p==null ? null : p.value);
}

/**
* 获取比较器
*/
public Comparator<? super K> comparator() {
return comparator;
}

/**
* 获取第一个 key
*/
public K firstKey() {
return key(getFirstEntry());
}

/**
* 获取最后一个 key
*/
public K lastKey() {
return key(getLastEntry());
}

/**
* 将指定 map 中的数据复制到当前 map 中
*/
public void putAll(Map<? extends K, ? extends V> map) {
// 当前 map 的大小
int mapSize = map.size();

// 如果是第一次插入数据且传入的 map 也是有序 map
if (size==0 && mapSize!=0 && map instanceof SortedMap) {
// 参数 map 的 comparator
Comparator<?> c = ((SortedMap<?,?>)map).comparator();
// 如果 comparator 相同
if (c == comparator || (c != null && c.equals(comparator))) {
++modCount;
// build 方法
try {
buildFromSorted(mapSize, map.entrySet().iterator(),
null, null);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
return;
}
}
// 循环调用 put 方法
super.putAll(map);
}

/**
* 通过 key 查询对应的红黑树节点
*/
final Entry<K,V> getEntry(Object key) {
// 如果 comparator 不为空,通过 comparator 的
// compare 方法比较查询
if (comparator != null)
return getEntryUsingComparator(key);
// 参数校验
if (key == null)
throw new NullPointerException();
// 将 key 转成 Comparable 类型
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
Entry<K,V> p = root;
// 从头结点开始遍历比较,注意:HashMap 中是使用 equals 判断
// 两个 key 是否相等,而 TreeMap 是使用 compareTo 方法
while (p != null) {
int cmp = k.compareTo(p.key);
if (cmp < 0)
p = p.left;
else if (cmp > 0)
p = p.right;
else
return p;
}
return null;
}

/**
* 使用 comparator 的 compare 方法比较两个 key 的大小
*/
final Entry<K,V> getEntryUsingComparator(Object key) {
@SuppressWarnings("unchecked")
K k = (K) key;
Comparator<? super K> cpr = comparator;
if (cpr != null) {
// 从根节点开始遍历,然后调用 comparator 的 compare 方法比较
Entry<K,V> p = root;
while (p != null) {
int cmp = cpr.compare(k, p.key);
if (cmp < 0)
p = p.left;
else if (cmp > 0)
p = p.right;
else
return p;
}
}
return null;
}

/**
* 返回指定 key 对应的节点,如果 key 不存在,则返回的节点的 key 比参数 key 大且离参数 key 最近
* 如果 TreeMap 中最大的 key 都小于参数 key,则返回空
*/
final Entry<K,V> getCeilingEntry(K key) {
Entry<K,V> p = root;
// 从根节点开始遍历
while (p != null) {
// 比较
int cmp = compare(key, p.key);
// 如果 key 比当前节点的 key 小,比较左子节点
if (cmp < 0) {
// 如果左子节点不为空,则更新当前节点
if (p.left != null)
p = p.left;
// 如果为空则返回当前节点
else
return p;
}
// 如果比当前节点大,则去跟当前节点的右子节点去比较
else if (cmp > 0) {
// 如果右子节点不为空,更新当前节点为右子节点
if (p.right != null) {
p = p.right;
}
// 否则从当前节点开始遍历向上遍历,知道父节点是爷爷节点的左子节点,
// 然后返回左子节点
else {
Entry<K,V> parent = p.parent;
Entry<K,V> ch = p;
while (parent != null && ch == parent.right) {
ch = parent;
parent = parent.parent;
}
return parent;
}
}
// 如果相等则返回当前节点
else
return p;
}
return null;
}

/**
* 跟 getCeilingEntry 是相反操作,如果 key 存在,则返回对应的节点
* 否则返回的节点的 key 比参数 key 小且离参数 key 最近,如果 TreeMap
* 中最小 key 还比参数 key 大,则返回空
*/
final Entry<K,V> getFloorEntry(K key) {
Entry<K,V> p = root;
while (p != null) {
int cmp = compare(key, p.key);
if (cmp > 0) {
if (p.right != null)
p = p.right;
else
return p;
} else if (cmp < 0) {
if (p.left != null) {
p = p.left;
} else {
Entry<K,V> parent = p.parent;
Entry<K,V> ch = p;
while (parent != null && ch == parent.left) {
ch = parent;
parent = parent.parent;
}
return parent;
}
} else
return p;

}
return null;
}

/**
* 返回一个节点,节点的 key 比参数 key 大且离参数 key 最近
* 如果 TreeMap 中最大的 key 都小于参数 key,则返回空
*/
final Entry<K,V> getHigherEntry(K key) {
Entry<K,V> p = root;
while (p != null) {
int cmp = compare(key, p.key);
if (cmp < 0) {
if (p.left != null)
p = p.left;
else
return p;
} else {
if (p.right != null) {
p = p.right;
} else {
Entry<K,V> parent = p.parent;
Entry<K,V> ch = p;
while (parent != null && ch == parent.right) {
ch = parent;
parent = parent.parent;
}
return parent;
}
}
}
return null;
}

/**
* 返回的节点否则返回的节点的 key 比参数 key 小且离参数 key 最近,
* 如果 TreeMap中最小 key 还比参数 key 大,则返回空
*/
final Entry<K,V> getLowerEntry(K key) {
Entry<K,V> p = root;
while (p != null) {
int cmp = compare(key, p.key);
if (cmp > 0) {
if (p.right != null)
p = p.right;
else
return p;
} else {
if (p.left != null) {
p = p.left;
} else {
Entry<K,V> parent = p.parent;
Entry<K,V> ch = p;
while (parent != null && ch == parent.left) {
ch = parent;
parent = parent.parent;
}
return parent;
}
}
}
return null;
}

/**
* 插入数据,如果 key 存在,则旧值会被替换
*/
public V put(K key, V value) {
Entry<K,V> t = root;
// 如果是第一次插入数据,直接设置 root
if (t == null) {
// 参数校验,参数类型有可能不是 Comparable 类型,则会抛出类型转换异常
compare(key, key);

// 设置根节点和 map 大小
root = new Entry<>(key, value, null);
size = 1;
// 修改次数 + 1
modCount++;
return null;
}

int cmp;
Entry<K,V> parent;
Comparator<? super K> cpr = comparator;
// 如果 comparator 不为空,则通过 comparator.compare 比较大小,
// 确定插入位置
if (cpr != null) {
// 从根节点开始遍历,比较大小
do {
// 更新父节点为当前节点
parent = t;
cmp = cpr.compare(key, t.key);
// 如果比当前节点小,则更新当前节点为左子节点
if (cmp < 0)
t = t.left;
// 否则更新为右子节点
else if (cmp > 0)
t = t.right;
// 如果相等则替换旧值
else
return t.setValue(value);
} while (t != null);
}
// 如果 comparator 为空,则使用 key 自己的 compareTo 方法比较大小
else {
// 参数校验
if (key == null)
throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
// 从根部开始遍历,比较大小
do {
// 更新父节点为当前节点
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
// 创建新节点
Entry<K,V> e = new Entry<>(key, value, parent);
// 根据比较结果判断插入父节点的左子树还是右子树
if (cmp < 0)
parent.left = e;
else
parent.right = e;
// 插入数据后修正红黑树性质
fixAfterInsertion(e);
// map 数量 + 1
size++;
// 修改次数 + 1
modCount++;
return null;
}

/**
* 如果 map 中存在参数 key,则 key 与参数 key 相等的节点
*/
public V remove(Object key) {
// 通过 key 查询到节点
Entry<K,V> p = getEntry(key);
// 如果节点不存在则直接返回
if (p == null)
return null;

// 记录 key 对应的 value
V oldValue = p.value;
// 删除节点
deleteEntry(p);
// 返回 value
return oldValue;
}

/**
* 清空 map
*/
public void clear() {
// 修改次数 + 1
modCount++;
// 大小设置为 0
size = 0;
// 根节点设置为空
root = null;
}

/**
* 返回当前 map 的浅拷贝实例(key value 不是通过 clone 创建的)
*/
public Object clone() {
// 克隆对象
TreeMap<?,?> clone;
try {
clone = (TreeMap<?,?>) super.clone();
} catch (CloneNotSupportedException e) {
throw new InternalError(e);
}

// 将 map 设置为初始化妆台
clone.root = null;
clone.size = 0;
clone.modCount = 0;
clone.entrySet = null;
clone.navigableKeySet = null;
clone.descendingMap = null;

// 赋值一份新的数据
try {
clone.buildFromSorted(size, entrySet().iterator(), null, null);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}

// 返回结果
return clone;
}

// 重写 NavigableMap 的方法

/**
* 获取最小节点,返回一个简单的 Entry 对象,只包含 key value
*/
public Map.Entry<K,V> firstEntry() {
return exportEntry(getFirstEntry());
}

/**
* 返回最大节点,返回一个简单的 Entry 对象,只包含 key value
*/
public Map.Entry<K,V> lastEntry() {
return exportEntry(getLastEntry());
}

/**
* 删除最小节点,并返回
*/
public Map.Entry<K,V> pollFirstEntry() {
// 获取最小节点
Entry<K,V> p = getFirstEntry();
// 转换为简化的 Entry 对象
Map.Entry<K,V> result = exportEntry(p);
// 如果最小节点不为空则移除
if (p != null)
deleteEntry(p);
// 返回最下节点的简化对象
return result;
}

/**
* 删除最大节点,并返回
*/
public Map.Entry<K,V> pollLastEntry() {
// 获取最大节点
Entry<K,V> p = getLastEntry();
// 转换为简化的 Entry 对象
Map.Entry<K,V> result = exportEntry(p);
// 如果最大节点不为空则移除
if (p != null)
deleteEntry(p);
// 返回最大节点的简化对象
return result;
}

/**
* 返回一个简化节点,节点的 key 比参数 key 小且离参数 key 最近
*/
public Map.Entry<K,V> lowerEntry(K key) {
return exportEntry(getLowerEntry(key));
}

/**
* 返回一个比 key 小且离 key 最近的 key
*/
public K lowerKey(K key) {
return keyOrNull(getLowerEntry(key));
}

/**
* 返回一个简化节点,key 存在则是与 key 与参数相等的节点,
* 否则返回的节点的 key 比参数 key 小且离参数 key 最近
*/
public Map.Entry<K,V> floorEntry(K key) {
return exportEntry(getFloorEntry(key));
}

/**
* 返回一个key,如果 key 存在则返回 key,否则返回一个比 key 小
* 且离 key 最近的 key
*/
public K floorKey(K key) {
return keyOrNull(getFloorEntry(key));
}

/**
* 返回一个简化节点,如果 key 存在则返回指定 key 对应的简化节点,
* 如果 key 不存在,则返回的简化节点的 key 比参数 key 大且离参数 key 最近
* 如果 TreeMap 中最大的 key 都小于参数 key,则返回空
*/
public Map.Entry<K,V> ceilingEntry(K key) {
return exportEntry(getCeilingEntry(key));
}

/**
* 如果 key 存在,则返回 key,否则返回一个比参数 key 大且离参数 key
* 最近的 key
*/
public K ceilingKey(K key) {
return keyOrNull(getCeilingEntry(key));
}

/**
* 返回一个简化节点,节点的 key 比参数 key 大且离参数 key 最近
* 如果 TreeMap 中最大的 key 都小于参数 key,则返回空
*/
public Map.Entry<K,V> higherEntry(K key) {
return exportEntry(getHigherEntry(key));
}

/**
* 返回一个 key,这个 key 比参数 key 大且离参数 key 最近
*/
public K higherKey(K key) {
return keyOrNull(getHigherEntry(key));
}


/**
* key value 映射条目的 set 集合
*/
private transient EntrySet entrySet;
/**
* map 中 key 的 set 集合
*/
private transient KeySet<K> navigableKeySet;
/**
* 根据 key 倒序排列的 map,treeMap 中的变化也会体现到该 map 中
*/
private transient NavigableMap<K,V> descendingMap;

/**
* 返回 map 包含的所有 key 的 set 集合
*/
public Set<K> keySet() {
return navigableKeySet();
}

/**
* 返回 map 包含的所有 key 的有序 set 集合
*/
public NavigableSet<K> navigableKeySet() {
KeySet<K> nks = navigableKeySet;
return (nks != null) ? nks : (navigableKeySet = new KeySet<>(this));
}

/**
* 返回 map 包含的所有 key 的倒序 set 集合
*/
public NavigableSet<K> descendingKeySet() {
return descendingMap().navigableKeySet();
}

/**
* 返回 map 包含的所有 value 的集合
*/
public Collection<V> values() {
Collection<V> vs = values;
if (vs == null) {
vs = new Values();
values = vs;
}
return vs;
}

/**
* 返回 map 中所有 key value 映射的条目 set 集合
*/
public Set<Map.Entry<K,V>> entrySet() {
EntrySet es = entrySet;
return (es != null) ? es : (entrySet = new EntrySet());
}

/**
* 返回一个根据 key 倒序的 map
*/
public NavigableMap<K, V> descendingMap() {
NavigableMap<K, V> km = descendingMap;
return (km != null) ? km :
(descendingMap = new DescendingSubMap<>(this,
true, null, true,
true, null, true));
}

/**
* 子 map ,有序
*/
public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
K toKey, boolean toInclusive) {
return new AscendingSubMap<>(this,
false, fromKey, fromInclusive,
false, toKey, toInclusive);
}

/**
* 返回一个 NavigableMap,里面包含的是从第一个 key 到指定 key 映射的数据
*/
public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
return new AscendingSubMap<>(this,
true, null, true,
false, toKey, inclusive);
}

/**
* 返回一个 NavigableMap,里面包含的是从指定 key 到最后一个 key 映射的数据
*/
public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
return new AscendingSubMap<>(this,
false, fromKey, inclusive,
true, null, true);
}

/**
* 指定两个 key 之间的映射数据
*/
public SortedMap<K,V> subMap(K fromKey, K toKey) {
return subMap(fromKey, true, toKey, false);
}

/**
* 返回一个 SortedMap,里面包含的是从第一个 key 到指定 key 映射的数据
*/
public SortedMap<K,V> headMap(K toKey) {
return headMap(toKey, false);
}

/**
* 返回一个 NavigableMap,里面包含的是从指定 key 到最后一个 key 映射的数据
*/
public SortedMap<K,V> tailMap(K fromKey) {
return tailMap(fromKey, true);
}

/**
* 如果 key 对应的 value 为 oldValue,则替换为 newValue
*/
@Override
public boolean replace(K key, V oldValue, V newValue) {
Entry<K,V> p = getEntry(key);
if (p!=null && Objects.equals(oldValue, p.value)) {
p.value = newValue;
return true;
}
return false;
}

/**
* 将 key 的 value 替换为传入的 value
*/
@Override
public V replace(K key, V value) {
Entry<K,V> p = getEntry(key);
if (p!=null) {
V oldValue = p.value;
p.value = value;
return oldValue;
}
return null;
}

/**
* 遍历,并执行 action 函数
*/
@Override
public void forEach(BiConsumer<? super K, ? super V> action) {
Objects.requireNonNull(action);
int expectedModCount = modCount;
for (Entry<K, V> e = getFirstEntry(); e != null; e = successor(e)) {
action.accept(e.key, e.value);

if (expectedModCount != modCount) {
throw new ConcurrentModificationException();
}
}
}

/**
* 遍历并执行 function 函数替换 value
*/
@Override
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
Objects.requireNonNull(function);
int expectedModCount = modCount;

for (Entry<K, V> e = getFirstEntry(); e != null; e = successor(e)) {
e.value = function.apply(e.key, e.value);

if (expectedModCount != modCount) {
throw new ConcurrentModificationException();
}
}
}


/**
* map 中的 value 集合
*/
class Values extends AbstractCollection<V> {
public Iterator<V> iterator() {
return new ValueIterator(getFirstEntry());
}

public int size() {
return TreeMap.this.size();
}

public boolean contains(Object o) {
return TreeMap.this.containsValue(o);
}

public boolean remove(Object o) {
for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {
if (valEquals(e.getValue(), o)) {
deleteEntry(e);
return true;
}
}
return false;
}

public void clear() {
TreeMap.this.clear();
}

public Spliterator<V> spliterator() {
return new ValueSpliterator<K,V>(TreeMap.this, null, null, 0, -1, 0);
}
}

/**
* Map 中的 key value 映射条目集合
*/
class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public Iterator<Map.Entry<K,V>> iterator() {
return new EntryIterator(getFirstEntry());
}

public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
Object value = entry.getValue();
Entry<K,V> p = getEntry(entry.getKey());
return p != null && valEquals(p.getValue(), value);
}

public boolean remove(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
Object value = entry.getValue();
Entry<K,V> p = getEntry(entry.getKey());
if (p != null && valEquals(p.getValue(), value)) {
deleteEntry(p);
return true;
}
return false;
}

public int size() {
return TreeMap.this.size();
}

public void clear() {
TreeMap.this.clear();
}

public Spliterator<Map.Entry<K,V>> spliterator() {
return new EntrySpliterator<K,V>(TreeMap.this, null, null, 0, -1, 0);
}
}

/*
* key 迭代器
*/

Iterator<K> keyIterator() {
return new KeyIterator(getFirstEntry());
}

/**
* 倒序 key 迭代器
*/
Iterator<K> descendingKeyIterator() {
return new DescendingKeyIterator(getLastEntry());
}

/**
* key 的 Set 集合
*/
static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
private final NavigableMap<E, ?> m;
KeySet(NavigableMap<E,?> map) { m = map; }

public Iterator<E> iterator() {
if (m instanceof TreeMap)
return ((TreeMap<E,?>)m).keyIterator();
else
return ((TreeMap.NavigableSubMap<E,?>)m).keyIterator();
}

public Iterator<E> descendingIterator() {
if (m instanceof TreeMap)
return ((TreeMap<E,?>)m).descendingKeyIterator();
else
return ((TreeMap.NavigableSubMap<E,?>)m).descendingKeyIterator();
}

public int size() { return m.size(); }
public boolean isEmpty() { return m.isEmpty(); }
public boolean contains(Object o) { return m.containsKey(o); }
public void clear() { m.clear(); }
public E lower(E e) { return m.lowerKey(e); }
public E floor(E e) { return m.floorKey(e); }
public E ceiling(E e) { return m.ceilingKey(e); }
public E higher(E e) { return m.higherKey(e); }
public E first() { return m.firstKey(); }
public E last() { return m.lastKey(); }
public Comparator<? super E> comparator() { return m.comparator(); }
public E pollFirst() {
Map.Entry<E,?> e = m.pollFirstEntry();
return (e == null) ? null : e.getKey();
}
public E pollLast() {
Map.Entry<E,?> e = m.pollLastEntry();
return (e == null) ? null : e.getKey();
}
public boolean remove(Object o) {
int oldSize = size();
m.remove(o);
return size() != oldSize;
}
public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
E toElement, boolean toInclusive) {
return new KeySet<>(m.subMap(fromElement, fromInclusive,
toElement, toInclusive));
}
public NavigableSet<E> headSet(E toElement, boolean inclusive) {
return new KeySet<>(m.headMap(toElement, inclusive));
}
public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
return new KeySet<>(m.tailMap(fromElement, inclusive));
}
public SortedSet<E> subSet(E fromElement, E toElement) {
return subSet(fromElement, true, toElement, false);
}
public SortedSet<E> headSet(E toElement) {
return headSet(toElement, false);
}
public SortedSet<E> tailSet(E fromElement) {
return tailSet(fromElement, true);
}
public NavigableSet<E> descendingSet() {
return new KeySet<>(m.descendingMap());
}

public Spliterator<E> spliterator() {
return keySpliteratorFor(m);
}
}

/**
* TreeMap 迭代器的父类
*/
abstract class PrivateEntryIterator<T> implements Iterator<T> {
Entry<K,V> next;
Entry<K,V> lastReturned;
int expectedModCount;

PrivateEntryIterator(Entry<K,V> first) {
expectedModCount = modCount;
lastReturned = null;
next = first;
}

public final boolean hasNext() {
return next != null;
}

final Entry<K,V> nextEntry() {
Entry<K,V> e = next;
if (e == null)
throw new NoSuchElementException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
next = successor(e);
lastReturned = e;
return e;
}

final Entry<K,V> prevEntry() {
Entry<K,V> e = next;
if (e == null)
throw new NoSuchElementException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
next = predecessor(e);
lastReturned = e;
return e;
}

public void remove() {
if (lastReturned == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
// deleted entries are replaced by their successors
if (lastReturned.left != null && lastReturned.right != null)
next = lastReturned;
deleteEntry(lastReturned);
expectedModCount = modCount;
lastReturned = null;
}
}

/**
* key value 映射条目迭代器
*/
final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
EntryIterator(Entry<K,V> first) {
super(first);
}
public Map.Entry<K,V> next() {
return nextEntry();
}
}

/**
* value 迭代器
*/
final class ValueIterator extends PrivateEntryIterator<V> {
ValueIterator(Entry<K,V> first) {
super(first);
}
public V next() {
return nextEntry().value;
}
}

/**
* key 迭代器
*/
final class KeyIterator extends PrivateEntryIterator<K> {
KeyIterator(Entry<K,V> first) {
super(first);
}
public K next() {
return nextEntry().key;
}
}

/**
* 倒序 key 迭代器
*/
final class DescendingKeyIterator extends PrivateEntryIterator<K> {
DescendingKeyIterator(Entry<K,V> first) {
super(first);
}
public K next() {
return prevEntry().key;
}
public void remove() {
if (lastReturned == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
deleteEntry(lastReturned);
lastReturned = null;
expectedModCount = modCount;
}
}

/**
* 比较 k1,k2 两个参数大小
*/
@SuppressWarnings("unchecked")
final int compare(Object k1, Object k2) {
return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
: comparator.compare((K)k1, (K)k2);
}

/**
* 判断 o1,o2 两个参数是否相等
*/
static final boolean valEquals(Object o1, Object o2) {
return (o1==null ? o2==null : o1.equals(o2));
}

/**
* 将 TreeMap 的 Entry 对象转换为 Map 的 Entry 对象
*/
static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {
return (e == null) ? null :
new AbstractMap.SimpleImmutableEntry<>(e);
}

/**
* 返回 Entry 的 key 字段,如果 e 为空则返回 null
*/
static <K,V> K keyOrNull(TreeMap.Entry<K,V> e) {
return (e == null) ? null : e.key;
}

/**
* 返回 Entry 的 key 字段,如果 e 为空则抛出异常
*/
static <K> K key(Entry<K,?> e) {
if (e==null)
throw new NoSuchElementException();
return e.key;
}


/**
* Dummy value serving as unmatchable fence key for unbounded
* SubMapIterators
*/
private static final Object UNBOUNDED = new Object();

/**
* 子 map 的父类
*/
abstract static class NavigableSubMap<K,V> extends AbstractMap<K,V>
implements NavigableMap<K,V>, java.io.Serializable {
private static final long serialVersionUID = -2102997345730753016L;
/**
* The backing map.
*/
final TreeMap<K,V> m;

/**
* Endpoints are represented as triples (fromStart, lo,
* loInclusive) and (toEnd, hi, hiInclusive). If fromStart is
* true, then the low (absolute) bound is the start of the
* backing map, and the other values are ignored. Otherwise,
* if loInclusive is true, lo is the inclusive bound, else lo
* is the exclusive bound. Similarly for the upper bound.
*/
final K lo, hi;
final boolean fromStart, toEnd;
final boolean loInclusive, hiInclusive;

NavigableSubMap(TreeMap<K,V> m,
boolean fromStart, K lo, boolean loInclusive,
boolean toEnd, K hi, boolean hiInclusive) {
if (!fromStart && !toEnd) {
if (m.compare(lo, hi) > 0)
throw new IllegalArgumentException("fromKey > toKey");
} else {
if (!fromStart) // type check
m.compare(lo, lo);
if (!toEnd)
m.compare(hi, hi);
}

this.m = m;
this.fromStart = fromStart;
this.lo = lo;
this.loInclusive = loInclusive;
this.toEnd = toEnd;
this.hi = hi;
this.hiInclusive = hiInclusive;
}

// internal utilities

final boolean tooLow(Object key) {
if (!fromStart) {
int c = m.compare(key, lo);
if (c < 0 || (c == 0 && !loInclusive))
return true;
}
return false;
}

final boolean tooHigh(Object key) {
if (!toEnd) {
int c = m.compare(key, hi);
if (c > 0 || (c == 0 && !hiInclusive))
return true;
}
return false;
}

final boolean inRange(Object key) {
return !tooLow(key) && !tooHigh(key);
}

final boolean inClosedRange(Object key) {
return (fromStart || m.compare(key, lo) >= 0)
&& (toEnd || m.compare(hi, key) >= 0);
}

final boolean inRange(Object key, boolean inclusive) {
return inclusive ? inRange(key) : inClosedRange(key);
}

/*
* Absolute versions of relation operations.
* Subclasses map to these using like-named "sub"
* versions that invert senses for descending maps
*/

final TreeMap.Entry<K,V> absLowest() {
TreeMap.Entry<K,V> e =
(fromStart ? m.getFirstEntry() :
(loInclusive ? m.getCeilingEntry(lo) :
m.getHigherEntry(lo)));
return (e == null || tooHigh(e.key)) ? null : e;
}

final TreeMap.Entry<K,V> absHighest() {
TreeMap.Entry<K,V> e =
(toEnd ? m.getLastEntry() :
(hiInclusive ? m.getFloorEntry(hi) :
m.getLowerEntry(hi)));
return (e == null || tooLow(e.key)) ? null : e;
}

final TreeMap.Entry<K,V> absCeiling(K key) {
if (tooLow(key))
return absLowest();
TreeMap.Entry<K,V> e = m.getCeilingEntry(key);
return (e == null || tooHigh(e.key)) ? null : e;
}

final TreeMap.Entry<K,V> absHigher(K key) {
if (tooLow(key))
return absLowest();
TreeMap.Entry<K,V> e = m.getHigherEntry(key);
return (e == null || tooHigh(e.key)) ? null : e;
}

final TreeMap.Entry<K,V> absFloor(K key) {
if (tooHigh(key))
return absHighest();
TreeMap.Entry<K,V> e = m.getFloorEntry(key);
return (e == null || tooLow(e.key)) ? null : e;
}

final TreeMap.Entry<K,V> absLower(K key) {
if (tooHigh(key))
return absHighest();
TreeMap.Entry<K,V> e = m.getLowerEntry(key);
return (e == null || tooLow(e.key)) ? null : e;
}

/** Returns the absolute high fence for ascending traversal */
final TreeMap.Entry<K,V> absHighFence() {
return (toEnd ? null : (hiInclusive ?
m.getHigherEntry(hi) :
m.getCeilingEntry(hi)));
}

/** Return the absolute low fence for descending traversal */
final TreeMap.Entry<K,V> absLowFence() {
return (fromStart ? null : (loInclusive ?
m.getLowerEntry(lo) :
m.getFloorEntry(lo)));
}

// Abstract methods defined in ascending vs descending classes
// These relay to the appropriate absolute versions

abstract TreeMap.Entry<K,V> subLowest();
abstract TreeMap.Entry<K,V> subHighest();
abstract TreeMap.Entry<K,V> subCeiling(K key);
abstract TreeMap.Entry<K,V> subHigher(K key);
abstract TreeMap.Entry<K,V> subFloor(K key);
abstract TreeMap.Entry<K,V> subLower(K key);

/** Returns ascending iterator from the perspective of this submap */
abstract Iterator<K> keyIterator();

abstract Spliterator<K> keySpliterator();

/** Returns descending iterator from the perspective of this submap */
abstract Iterator<K> descendingKeyIterator();

// public methods

public boolean isEmpty() {
return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();
}

public int size() {
return (fromStart && toEnd) ? m.size() : entrySet().size();
}

public final boolean containsKey(Object key) {
return inRange(key) && m.containsKey(key);
}

public final V put(K key, V value) {
if (!inRange(key))
throw new IllegalArgumentException("key out of range");
return m.put(key, value);
}

public final V get(Object key) {
return !inRange(key) ? null : m.get(key);
}

public final V remove(Object key) {
return !inRange(key) ? null : m.remove(key);
}

public final Map.Entry<K,V> ceilingEntry(K key) {
return exportEntry(subCeiling(key));
}

public final K ceilingKey(K key) {
return keyOrNull(subCeiling(key));
}

public final Map.Entry<K,V> higherEntry(K key) {
return exportEntry(subHigher(key));
}

public final K higherKey(K key) {
return keyOrNull(subHigher(key));
}

public final Map.Entry<K,V> floorEntry(K key) {
return exportEntry(subFloor(key));
}

public final K floorKey(K key) {
return keyOrNull(subFloor(key));
}

public final Map.Entry<K,V> lowerEntry(K key) {
return exportEntry(subLower(key));
}

public final K lowerKey(K key) {
return keyOrNull(subLower(key));
}

public final K firstKey() {
return key(subLowest());
}

public final K lastKey() {
return key(subHighest());
}

public final Map.Entry<K,V> firstEntry() {
return exportEntry(subLowest());
}

public final Map.Entry<K,V> lastEntry() {
return exportEntry(subHighest());
}

public final Map.Entry<K,V> pollFirstEntry() {
TreeMap.Entry<K,V> e = subLowest();
Map.Entry<K,V> result = exportEntry(e);
if (e != null)
m.deleteEntry(e);
return result;
}

public final Map.Entry<K,V> pollLastEntry() {
TreeMap.Entry<K,V> e = subHighest();
Map.Entry<K,V> result = exportEntry(e);
if (e != null)
m.deleteEntry(e);
return result;
}

// Views
transient NavigableMap<K,V> descendingMapView;
transient EntrySetView entrySetView;
transient KeySet<K> navigableKeySetView;

public final NavigableSet<K> navigableKeySet() {
KeySet<K> nksv = navigableKeySetView;
return (nksv != null) ? nksv :
(navigableKeySetView = new TreeMap.KeySet<>(this));
}

public final Set<K> keySet() {
return navigableKeySet();
}

public NavigableSet<K> descendingKeySet() {
return descendingMap().navigableKeySet();
}

public final SortedMap<K,V> subMap(K fromKey, K toKey) {
return subMap(fromKey, true, toKey, false);
}

public final SortedMap<K,V> headMap(K toKey) {
return headMap(toKey, false);
}

public final SortedMap<K,V> tailMap(K fromKey) {
return tailMap(fromKey, true);
}

// View classes

abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
private transient int size = -1, sizeModCount;

public int size() {
if (fromStart && toEnd)
return m.size();
if (size == -1 || sizeModCount != m.modCount) {
sizeModCount = m.modCount;
size = 0;
Iterator<?> i = iterator();
while (i.hasNext()) {
size++;
i.next();
}
}
return size;
}

public boolean isEmpty() {
TreeMap.Entry<K,V> n = absLowest();
return n == null || tooHigh(n.key);
}

public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
Object key = entry.getKey();
if (!inRange(key))
return false;
TreeMap.Entry<?,?> node = m.getEntry(key);
return node != null &&
valEquals(node.getValue(), entry.getValue());
}

public boolean remove(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
Object key = entry.getKey();
if (!inRange(key))
return false;
TreeMap.Entry<K,V> node = m.getEntry(key);
if (node!=null && valEquals(node.getValue(),
entry.getValue())) {
m.deleteEntry(node);
return true;
}
return false;
}
}

/**
* Iterators for SubMaps
*/
abstract class SubMapIterator<T> implements Iterator<T> {
TreeMap.Entry<K,V> lastReturned;
TreeMap.Entry<K,V> next;
final Object fenceKey;
int expectedModCount;

SubMapIterator(TreeMap.Entry<K,V> first,
TreeMap.Entry<K,V> fence) {
expectedModCount = m.modCount;
lastReturned = null;
next = first;
fenceKey = fence == null ? UNBOUNDED : fence.key;
}

public final boolean hasNext() {
return next != null && next.key != fenceKey;
}

final TreeMap.Entry<K,V> nextEntry() {
TreeMap.Entry<K,V> e = next;
if (e == null || e.key == fenceKey)
throw new NoSuchElementException();
if (m.modCount != expectedModCount)
throw new ConcurrentModificationException();
next = successor(e);
lastReturned = e;
return e;
}

final TreeMap.Entry<K,V> prevEntry() {
TreeMap.Entry<K,V> e = next;
if (e == null || e.key == fenceKey)
throw new NoSuchElementException();
if (m.modCount != expectedModCount)
throw new ConcurrentModificationException();
next = predecessor(e);
lastReturned = e;
return e;
}

final void removeAscending() {
if (lastReturned == null)
throw new IllegalStateException();
if (m.modCount != expectedModCount)
throw new ConcurrentModificationException();
// deleted entries are replaced by their successors
if (lastReturned.left != null && lastReturned.right != null)
next = lastReturned;
m.deleteEntry(lastReturned);
lastReturned = null;
expectedModCount = m.modCount;
}

final void removeDescending() {
if (lastReturned == null)
throw new IllegalStateException();
if (m.modCount != expectedModCount)
throw new ConcurrentModificationException();
m.deleteEntry(lastReturned);
lastReturned = null;
expectedModCount = m.modCount;
}

}

final class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
SubMapEntryIterator(TreeMap.Entry<K,V> first,
TreeMap.Entry<K,V> fence) {
super(first, fence);
}
public Map.Entry<K,V> next() {
return nextEntry();
}
public void remove() {
removeAscending();
}
}

final class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
DescendingSubMapEntryIterator(TreeMap.Entry<K,V> last,
TreeMap.Entry<K,V> fence) {
super(last, fence);
}

public Map.Entry<K,V> next() {
return prevEntry();
}
public void remove() {
removeDescending();
}
}

// Implement minimal Spliterator as KeySpliterator backup
final class SubMapKeyIterator extends SubMapIterator<K>
implements Spliterator<K> {
SubMapKeyIterator(TreeMap.Entry<K,V> first,
TreeMap.Entry<K,V> fence) {
super(first, fence);
}
public K next() {
return nextEntry().key;
}
public void remove() {
removeAscending();
}
public Spliterator<K> trySplit() {
return null;
}
public void forEachRemaining(Consumer<? super K> action) {
while (hasNext())
action.accept(next());
}
public boolean tryAdvance(Consumer<? super K> action) {
if (hasNext()) {
action.accept(next());
return true;
}
return false;
}
public long estimateSize() {
return Long.MAX_VALUE;
}
public int characteristics() {
return Spliterator.DISTINCT | Spliterator.ORDERED |
Spliterator.SORTED;
}
public final Comparator<? super K> getComparator() {
return NavigableSubMap.this.comparator();
}
}

final class DescendingSubMapKeyIterator extends SubMapIterator<K>
implements Spliterator<K> {
DescendingSubMapKeyIterator(TreeMap.Entry<K,V> last,
TreeMap.Entry<K,V> fence) {
super(last, fence);
}
public K next() {
return prevEntry().key;
}
public void remove() {
removeDescending();
}
public Spliterator<K> trySplit() {
return null;
}
public void forEachRemaining(Consumer<? super K> action) {
while (hasNext())
action.accept(next());
}
public boolean tryAdvance(Consumer<? super K> action) {
if (hasNext()) {
action.accept(next());
return true;
}
return false;
}
public long estimateSize() {
return Long.MAX_VALUE;
}
public int characteristics() {
return Spliterator.DISTINCT | Spliterator.ORDERED;
}
}
}

/**
* 正序子 map
*/
static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
private static final long serialVersionUID = 912986545866124060L;

AscendingSubMap(TreeMap<K,V> m,
boolean fromStart, K lo, boolean loInclusive,
boolean toEnd, K hi, boolean hiInclusive) {
super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
}

public Comparator<? super K> comparator() {
return m.comparator();
}

public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
K toKey, boolean toInclusive) {
if (!inRange(fromKey, fromInclusive))
throw new IllegalArgumentException("fromKey out of range");
if (!inRange(toKey, toInclusive))
throw new IllegalArgumentException("toKey out of range");
return new AscendingSubMap<>(m,
false, fromKey, fromInclusive,
false, toKey, toInclusive);
}

public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
if (!inRange(toKey, inclusive))
throw new IllegalArgumentException("toKey out of range");
return new AscendingSubMap<>(m,
fromStart, lo, loInclusive,
false, toKey, inclusive);
}

public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
if (!inRange(fromKey, inclusive))
throw new IllegalArgumentException("fromKey out of range");
return new AscendingSubMap<>(m,
false, fromKey, inclusive,
toEnd, hi, hiInclusive);
}

public NavigableMap<K,V> descendingMap() {
NavigableMap<K,V> mv = descendingMapView;
return (mv != null) ? mv :
(descendingMapView =
new DescendingSubMap<>(m,
fromStart, lo, loInclusive,
toEnd, hi, hiInclusive));
}

Iterator<K> keyIterator() {
return new SubMapKeyIterator(absLowest(), absHighFence());
}

Spliterator<K> keySpliterator() {
return new SubMapKeyIterator(absLowest(), absHighFence());
}

Iterator<K> descendingKeyIterator() {
return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
}

final class AscendingEntrySetView extends EntrySetView {
public Iterator<Map.Entry<K,V>> iterator() {
return new SubMapEntryIterator(absLowest(), absHighFence());
}
}

public Set<Map.Entry<K,V>> entrySet() {
EntrySetView es = entrySetView;
return (es != null) ? es : (entrySetView = new AscendingEntrySetView());
}

TreeMap.Entry<K,V> subLowest() { return absLowest(); }
TreeMap.Entry<K,V> subHighest() { return absHighest(); }
TreeMap.Entry<K,V> subCeiling(K key) { return absCeiling(key); }
TreeMap.Entry<K,V> subHigher(K key) { return absHigher(key); }
TreeMap.Entry<K,V> subFloor(K key) { return absFloor(key); }
TreeMap.Entry<K,V> subLower(K key) { return absLower(key); }
}

/**
* 倒序子 map
*/
static final class DescendingSubMap<K,V> extends NavigableSubMap<K,V> {
private static final long serialVersionUID = 912986545866120460L;
DescendingSubMap(TreeMap<K,V> m,
boolean fromStart, K lo, boolean loInclusive,
boolean toEnd, K hi, boolean hiInclusive) {
super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
}

private final Comparator<? super K> reverseComparator =
Collections.reverseOrder(m.comparator);

public Comparator<? super K> comparator() {
return reverseComparator;
}

public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
K toKey, boolean toInclusive) {
if (!inRange(fromKey, fromInclusive))
throw new IllegalArgumentException("fromKey out of range");
if (!inRange(toKey, toInclusive))
throw new IllegalArgumentException("toKey out of range");
return new DescendingSubMap<>(m,
false, toKey, toInclusive,
false, fromKey, fromInclusive);
}

public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
if (!inRange(toKey, inclusive))
throw new IllegalArgumentException("toKey out of range");
return new DescendingSubMap<>(m,
false, toKey, inclusive,
toEnd, hi, hiInclusive);
}

public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
if (!inRange(fromKey, inclusive))
throw new IllegalArgumentException("fromKey out of range");
return new DescendingSubMap<>(m,
fromStart, lo, loInclusive,
false, fromKey, inclusive);
}

public NavigableMap<K,V> descendingMap() {
NavigableMap<K,V> mv = descendingMapView;
return (mv != null) ? mv :
(descendingMapView =
new AscendingSubMap<>(m,
fromStart, lo, loInclusive,
toEnd, hi, hiInclusive));
}

Iterator<K> keyIterator() {
return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
}

Spliterator<K> keySpliterator() {
return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
}

Iterator<K> descendingKeyIterator() {
return new SubMapKeyIterator(absLowest(), absHighFence());
}

final class DescendingEntrySetView extends EntrySetView {
public Iterator<Map.Entry<K,V>> iterator() {
return new DescendingSubMapEntryIterator(absHighest(), absLowFence());
}
}

public Set<Map.Entry<K,V>> entrySet() {
EntrySetView es = entrySetView;
return (es != null) ? es : (entrySetView = new DescendingEntrySetView());
}

TreeMap.Entry<K,V> subLowest() { return absHighest(); }
TreeMap.Entry<K,V> subHighest() { return absLowest(); }
TreeMap.Entry<K,V> subCeiling(K key) { return absFloor(key); }
TreeMap.Entry<K,V> subHigher(K key) { return absLower(key); }
TreeMap.Entry<K,V> subFloor(K key) { return absCeiling(key); }
TreeMap.Entry<K,V> subLower(K key) { return absHigher(key); }
}

/**
* This class exists solely for the sake of serialization
* compatibility with previous releases of TreeMap that did not
* support NavigableMap. It translates an old-version SubMap into
* a new-version AscendingSubMap. This class is never otherwise
* used.
*
* @serial include
*/
private class SubMap extends AbstractMap<K,V>
implements SortedMap<K,V>, java.io.Serializable {
private static final long serialVersionUID = -6520786458950516097L;
private boolean fromStart = false, toEnd = false;
private K fromKey, toKey;
private Object readResolve() {
return new AscendingSubMap<>(TreeMap.this,
fromStart, fromKey, true,
toEnd, toKey, false);
}
public Set<Map.Entry<K,V>> entrySet() { throw new InternalError(); }
public K lastKey() { throw new InternalError(); }
public K firstKey() { throw new InternalError(); }
public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); }
public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); }
public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); }
public Comparator<? super K> comparator() { throw new InternalError(); }
}


// Red-black mechanics

private static final boolean RED = false;
private static final boolean BLACK = true;

/**
* Node in the Tree. Doubles as a means to pass key-value pairs back to
* user (see Map.Entry).
*/

static final class Entry<K,V> implements Map.Entry<K,V> {
K key;
V value;
Entry<K,V> left;
Entry<K,V> right;
Entry<K,V> parent;
boolean color = BLACK;

/**
* Make a new cell with given key, value, and parent, and with
* {@code null} child links, and BLACK color.
*/
Entry(K key, V value, Entry<K,V> parent) {
this.key = key;
this.value = value;
this.parent = parent;
}

/**
* Returns the key.
*
* @return the key
*/
public K getKey() {
return key;
}

/**
* Returns the value associated with the key.
*
* @return the value associated with the key
*/
public V getValue() {
return value;
}

/**
* Replaces the value currently associated with the key with the given
* value.
*
* @return the value associated with the key before this method was
* called
*/
public V setValue(V value) {
V oldValue = this.value;
this.value = value;
return oldValue;
}

public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>)o;

return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
}

public int hashCode() {
int keyHash = (key==null ? 0 : key.hashCode());
int valueHash = (value==null ? 0 : value.hashCode());
return keyHash ^ valueHash;
}

public String toString() {
return key + "=" + value;
}
}

/**
* Returns the first Entry in the TreeMap (according to the TreeMap's
* key-sort function). Returns null if the TreeMap is empty.
*/
final Entry<K,V> getFirstEntry() {
Entry<K,V> p = root;
if (p != null)
while (p.left != null)
p = p.left;
return p;
}

/**
* Returns the last Entry in the TreeMap (according to the TreeMap's
* key-sort function). Returns null if the TreeMap is empty.
*/
final Entry<K,V> getLastEntry() {
Entry<K,V> p = root;
if (p != null)
while (p.right != null)
p = p.right;
return p;
}

/**
* Returns the successor of the specified Entry, or null if no such.
*/
static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
if (t == null)
return null;
else if (t.right != null) {
Entry<K,V> p = t.right;
while (p.left != null)
p = p.left;
return p;
} else {
Entry<K,V> p = t.parent;
Entry<K,V> ch = t;
while (p != null && ch == p.right) {
ch = p;
p = p.parent;
}
return p;
}
}

/**
* Returns the predecessor of the specified Entry, or null if no such.
*/
static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {
if (t == null)
return null;
else if (t.left != null) {
Entry<K,V> p = t.left;
while (p.right != null)
p = p.right;
return p;
} else {
Entry<K,V> p = t.parent;
Entry<K,V> ch = t;
while (p != null && ch == p.left) {
ch = p;
p = p.parent;
}
return p;
}
}

/**
* Balancing operations.
*
* Implementations of rebalancings during insertion and deletion are
* slightly different than the CLR version. Rather than using dummy
* nilnodes, we use a set of accessors that deal properly with null. They
* are used to avoid messiness surrounding nullness checks in the main
* algorithms.
*/

private static <K,V> boolean colorOf(Entry<K,V> p) {
return (p == null ? BLACK : p.color);
}

private static <K,V> Entry<K,V> parentOf(Entry<K,V> p) {
return (p == null ? null: p.parent);
}

private static <K,V> void setColor(Entry<K,V> p, boolean c) {
if (p != null)
p.color = c;
}

private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) {
return (p == null) ? null: p.left;
}

private static <K,V> Entry<K,V> rightOf(Entry<K,V> p) {
return (p == null) ? null: p.right;
}

/** From CLR */
private void rotateLeft(Entry<K,V> p) {
if (p != null) {
Entry<K,V> r = p.right;
p.right = r.left;
if (r.left != null)
r.left.parent = p;
r.parent = p.parent;
if (p.parent == null)
root = r;
else if (p.parent.left == p)
p.parent.left = r;
else
p.parent.right = r;
r.left = p;
p.parent = r;
}
}

/** From CLR */
private void rotateRight(Entry<K,V> p) {
if (p != null) {
Entry<K,V> l = p.left;
p.left = l.right;
if (l.right != null) l.right.parent = p;
l.parent = p.parent;
if (p.parent == null)
root = l;
else if (p.parent.right == p)
p.parent.right = l;
else p.parent.left = l;
l.right = p;
p.parent = l;
}
}

/** From CLR */
private void fixAfterInsertion(Entry<K,V> x) {
x.color = RED;

while (x != null && x != root && x.parent.color == RED) {
if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
Entry<K,V> y = rightOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf(x), BLACK);
setColor(y, BLACK);
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x));
} else {
if (x == rightOf(parentOf(x))) {
x = parentOf(x);
rotateLeft(x);
}
setColor(parentOf(x), BLACK);
setColor(parentOf(parentOf(x)), RED);
rotateRight(parentOf(parentOf(x)));
}
} else {
Entry<K,V> y = leftOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf(x), BLACK);
setColor(y, BLACK);
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x));
} else {
if (x == leftOf(parentOf(x))) {
x = parentOf(x);
rotateRight(x);
}
setColor(parentOf(x), BLACK);
setColor(parentOf(parentOf(x)), RED);
rotateLeft(parentOf(parentOf(x)));
}
}
}
root.color = BLACK;
}

/**
* Delete node p, and then rebalance the tree.
*/
private void deleteEntry(Entry<K,V> p) {
modCount++;
size--;

// If strictly internal, copy successor's element to p and then make p
// point to successor.
if (p.left != null && p.right != null) {
Entry<K,V> s = successor(p);
p.key = s.key;
p.value = s.value;
p = s;
} // p has 2 children

// Start fixup at replacement node, if it exists.
Entry<K,V> replacement = (p.left != null ? p.left : p.right);

if (replacement != null) {
// Link replacement to parent
replacement.parent = p.parent;
if (p.parent == null)
root = replacement;
else if (p == p.parent.left)
p.parent.left = replacement;
else
p.parent.right = replacement;

// Null out links so they are OK to use by fixAfterDeletion.
p.left = p.right = p.parent = null;

// Fix replacement
if (p.color == BLACK)
fixAfterDeletion(replacement);
} else if (p.parent == null) { // return if we are the only node.
root = null;
} else { // No children. Use self as phantom replacement and unlink.
if (p.color == BLACK)
fixAfterDeletion(p);

if (p.parent != null) {
if (p == p.parent.left)
p.parent.left = null;
else if (p == p.parent.right)
p.parent.right = null;
p.parent = null;
}
}
}

/** From CLR */
private void fixAfterDeletion(Entry<K,V> x) {
while (x != root && colorOf(x) == BLACK) {
if (x == leftOf(parentOf(x))) {
Entry<K,V> sib = rightOf(parentOf(x));

if (colorOf(sib) == RED) {
setColor(sib, BLACK);
setColor(parentOf(x), RED);
rotateLeft(parentOf(x));
sib = rightOf(parentOf(x));
}

if (colorOf(leftOf(sib)) == BLACK &&
colorOf(rightOf(sib)) == BLACK) {
setColor(sib, RED);
x = parentOf(x);
} else {
if (colorOf(rightOf(sib)) == BLACK) {
setColor(leftOf(sib), BLACK);
setColor(sib, RED);
rotateRight(sib);
sib = rightOf(parentOf(x));
}
setColor(sib, colorOf(parentOf(x)));
setColor(parentOf(x), BLACK);
setColor(rightOf(sib), BLACK);
rotateLeft(parentOf(x));
x = root;
}
} else { // symmetric
Entry<K,V> sib = leftOf(parentOf(x));

if (colorOf(sib) == RED) {
setColor(sib, BLACK);
setColor(parentOf(x), RED);
rotateRight(parentOf(x));
sib = leftOf(parentOf(x));
}

if (colorOf(rightOf(sib)) == BLACK &&
colorOf(leftOf(sib)) == BLACK) {
setColor(sib, RED);
x = parentOf(x);
} else {
if (colorOf(leftOf(sib)) == BLACK) {
setColor(rightOf(sib), BLACK);
setColor(sib, RED);
rotateLeft(sib);
sib = leftOf(parentOf(x));
}
setColor(sib, colorOf(parentOf(x)));
setColor(parentOf(x), BLACK);
setColor(leftOf(sib), BLACK);
rotateRight(parentOf(x));
x = root;
}
}
}

setColor(x, BLACK);
}

private static final long serialVersionUID = 919286545866124006L;

/**
* Save the state of the {@code TreeMap} instance to a stream (i.e.,
* serialize it).
*
* @serialData The <em>size</em> of the TreeMap (the number of key-value
* mappings) is emitted (int), followed by the key (Object)
* and value (Object) for each key-value mapping represented
* by the TreeMap. The key-value mappings are emitted in
* key-order (as determined by the TreeMap's Comparator,
* or by the keys' natural ordering if the TreeMap has no
* Comparator).
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Write out the Comparator and any hidden stuff
s.defaultWriteObject();

// Write out size (number of Mappings)
s.writeInt(size);

// Write out keys and values (alternating)
for (Iterator<Map.Entry<K,V>> i = entrySet().iterator(); i.hasNext(); ) {
Map.Entry<K,V> e = i.next();
s.writeObject(e.getKey());
s.writeObject(e.getValue());
}
}

/**
* Reconstitute the {@code TreeMap} instance from a stream (i.e.,
* deserialize it).
*/
private void readObject(final java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in the Comparator and any hidden stuff
s.defaultReadObject();

// Read in size
int size = s.readInt();

buildFromSorted(size, null, s, null);
}

/** Intended to be called only from TreeSet.readObject */
void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
throws java.io.IOException, ClassNotFoundException {
buildFromSorted(size, null, s, defaultVal);
}

/** Intended to be called only from TreeSet.addAll */
void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {
try {
buildFromSorted(set.size(), set.iterator(), null, defaultVal);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
}


/**
* Linear time tree building algorithm from sorted data. Can accept keys
* and/or values from iterator or stream. This leads to too many
* parameters, but seems better than alternatives. The four formats
* that this method accepts are:
*
* 1) An iterator of Map.Entries. (it != null, defaultVal == null).
* 2) An iterator of keys. (it != null, defaultVal != null).
* 3) A stream of alternating serialized keys and values.
* (it == null, defaultVal == null).
* 4) A stream of serialized keys. (it == null, defaultVal != null).
*
* It is assumed that the comparator of the TreeMap is already set prior
* to calling this method.
*
* @param size the number of keys (or key-value pairs) to be read from
* the iterator or stream
* @param it If non-null, new entries are created from entries
* or keys read from this iterator.
* @param str If non-null, new entries are created from keys and
* possibly values read from this stream in serialized form.
* Exactly one of it and str should be non-null.
* @param defaultVal if non-null, this default value is used for
* each value in the map. If null, each value is read from
* iterator or stream, as described above.
* @throws java.io.IOException propagated from stream reads. This cannot
* occur if str is null.
* @throws ClassNotFoundException propagated from readObject.
* This cannot occur if str is null.
*/
private void buildFromSorted(int size, Iterator<?> it,
java.io.ObjectInputStream str,
V defaultVal)
throws java.io.IOException, ClassNotFoundException {
this.size = size;
root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
it, str, defaultVal);
}

/**
* Recursive "helper method" that does the real work of the
* previous method. Identically named parameters have
* identical definitions. Additional parameters are documented below.
* It is assumed that the comparator and size fields of the TreeMap are
* already set prior to calling this method. (It ignores both fields.)
*
* @param level the current level of tree. Initial call should be 0.
* @param lo the first element index of this subtree. Initial should be 0.
* @param hi the last element index of this subtree. Initial should be
* size-1.
* @param redLevel the level at which nodes should be red.
* Must be equal to computeRedLevel for tree of this size.
*/
@SuppressWarnings("unchecked")
private final Entry<K,V> buildFromSorted(int level, int lo, int hi,
int redLevel,
Iterator<?> it,
java.io.ObjectInputStream str,
V defaultVal)
throws java.io.IOException, ClassNotFoundException {
/*
* Strategy: The root is the middlemost element. To get to it, we
* have to first recursively construct the entire left subtree,
* so as to grab all of its elements. We can then proceed with right
* subtree.
*
* The lo and hi arguments are the minimum and maximum
* indices to pull out of the iterator or stream for current subtree.
* They are not actually indexed, we just proceed sequentially,
* ensuring that items are extracted in corresponding order.
*/

if (hi < lo) return null;

int mid = (lo + hi) >>> 1;

Entry<K,V> left = null;
if (lo < mid)
left = buildFromSorted(level+1, lo, mid - 1, redLevel,
it, str, defaultVal);

// extract key and/or value from iterator or stream
K key;
V value;
if (it != null) {
if (defaultVal==null) {
Map.Entry<?,?> entry = (Map.Entry<?,?>)it.next();
key = (K)entry.getKey();
value = (V)entry.getValue();
} else {
key = (K)it.next();
value = defaultVal;
}
} else { // use stream
key = (K) str.readObject();
value = (defaultVal != null ? defaultVal : (V) str.readObject());
}

Entry<K,V> middle = new Entry<>(key, value, null);

// color nodes in non-full bottommost level red
if (level == redLevel)
middle.color = RED;

if (left != null) {
middle.left = left;
left.parent = middle;
}

if (mid < hi) {
Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
it, str, defaultVal);
middle.right = right;
right.parent = middle;
}

return middle;
}

/**
* Find the level down to which to assign all nodes BLACK. This is the
* last `full' level of the complete binary tree produced by
* buildTree. The remaining nodes are colored RED. (This makes a `nice'
* set of color assignments wrt future insertions.) This level number is
* computed by finding the number of splits needed to reach the zeroeth
* node. (The answer is ~lg(N), but in any case must be computed by same
* quick O(lg(N)) loop.)
*/
private static int computeRedLevel(int sz) {
int level = 0;
for (int m = sz - 1; m >= 0; m = m / 2 - 1)
level++;
return level;
}

/**
* Currently, we support Spliterator-based versions only for the
* full map, in either plain of descending form, otherwise relying
* on defaults because size estimation for submaps would dominate
* costs. The type tests needed to check these for key views are
* not very nice but avoid disrupting existing class
* structures. Callers must use plain default spliterators if this
* returns null.
*/
static <K> Spliterator<K> keySpliteratorFor(NavigableMap<K,?> m) {
if (m instanceof TreeMap) {
@SuppressWarnings("unchecked") TreeMap<K,Object> t =
(TreeMap<K,Object>) m;
return t.keySpliterator();
}
if (m instanceof DescendingSubMap) {
@SuppressWarnings("unchecked") DescendingSubMap<K,?> dm =
(DescendingSubMap<K,?>) m;
TreeMap<K,?> tm = dm.m;
if (dm == tm.descendingMap) {
@SuppressWarnings("unchecked") TreeMap<K,Object> t =
(TreeMap<K,Object>) tm;
return t.descendingKeySpliterator();
}
}
@SuppressWarnings("unchecked") NavigableSubMap<K,?> sm =
(NavigableSubMap<K,?>) m;
return sm.keySpliterator();
}

final Spliterator<K> keySpliterator() {
return new KeySpliterator<K,V>(this, null, null, 0, -1, 0);
}

final Spliterator<K> descendingKeySpliterator() {
return new DescendingKeySpliterator<K,V>(this, null, null, 0, -2, 0);
}

/**
* Base class for spliterators. Iteration starts at a given
* origin and continues up to but not including a given fence (or
* null for end). At top-level, for ascending cases, the first
* split uses the root as left-fence/right-origin. From there,
* right-hand splits replace the current fence with its left
* child, also serving as origin for the split-off spliterator.
* Left-hands are symmetric. Descending versions place the origin
* at the end and invert ascending split rules. This base class
* is non-commital about directionality, or whether the top-level
* spliterator covers the whole tree. This means that the actual
* split mechanics are located in subclasses. Some of the subclass
* trySplit methods are identical (except for return types), but
* not nicely factorable.
*
* Currently, subclass versions exist only for the full map
* (including descending keys via its descendingMap). Others are
* possible but currently not worthwhile because submaps require
* O(n) computations to determine size, which substantially limits
* potential speed-ups of using custom Spliterators versus default
* mechanics.
*
* To boostrap initialization, external constructors use
* negative size estimates: -1 for ascend, -2 for descend.
*/
static class TreeMapSpliterator<K,V> {
final TreeMap<K,V> tree;
TreeMap.Entry<K,V> current; // traverser; initially first node in range
TreeMap.Entry<K,V> fence; // one past last, or null
int side; // 0: top, -1: is a left split, +1: right
int est; // size estimate (exact only for top-level)
int expectedModCount; // for CME checks

TreeMapSpliterator(TreeMap<K,V> tree,
TreeMap.Entry<K,V> origin, TreeMap.Entry<K,V> fence,
int side, int est, int expectedModCount) {
this.tree = tree;
this.current = origin;
this.fence = fence;
this.side = side;
this.est = est;
this.expectedModCount = expectedModCount;
}

final int getEstimate() { // force initialization
int s; TreeMap<K,V> t;
if ((s = est) < 0) {
if ((t = tree) != null) {
current = (s == -1) ? t.getFirstEntry() : t.getLastEntry();
s = est = t.size;
expectedModCount = t.modCount;
}
else
s = est = 0;
}
return s;
}

public final long estimateSize() {
return (long)getEstimate();
}
}

static final class KeySpliterator<K,V>
extends TreeMapSpliterator<K,V>
implements Spliterator<K> {
KeySpliterator(TreeMap<K,V> tree,
TreeMap.Entry<K,V> origin, TreeMap.Entry<K,V> fence,
int side, int est, int expectedModCount) {
super(tree, origin, fence, side, est, expectedModCount);
}

public KeySpliterator<K,V> trySplit() {
if (est < 0)
getEstimate(); // force initialization
int d = side;
TreeMap.Entry<K,V> e = current, f = fence,
s = ((e == null || e == f) ? null : // empty
(d == 0) ? tree.root : // was top
(d > 0) ? e.right : // was right
(d < 0 && f != null) ? f.left : // was left
null);
if (s != null && s != e && s != f &&
tree.compare(e.key, s.key) < 0) { // e not already past s
side = 1;
return new KeySpliterator<>
(tree, e, current = s, -1, est >>>= 1, expectedModCount);
}
return null;
}

public void forEachRemaining(Consumer<? super K> action) {
if (action == null)
throw new NullPointerException();
if (est < 0)
getEstimate(); // force initialization
TreeMap.Entry<K,V> f = fence, e, p, pl;
if ((e = current) != null && e != f) {
current = f; // exhaust
do {
action.accept(e.key);
if ((p = e.right) != null) {
while ((pl = p.left) != null)
p = pl;
}
else {
while ((p = e.parent) != null && e == p.right)
e = p;
}
} while ((e = p) != null && e != f);
if (tree.modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}

public boolean tryAdvance(Consumer<? super K> action) {
TreeMap.Entry<K,V> e;
if (action == null)
throw new NullPointerException();
if (est < 0)
getEstimate(); // force initialization
if ((e = current) == null || e == fence)
return false;
current = successor(e);
action.accept(e.key);
if (tree.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}

public int characteristics() {
return (side == 0 ? Spliterator.SIZED : 0) |
Spliterator.DISTINCT | Spliterator.SORTED | Spliterator.ORDERED;
}

public final Comparator<? super K> getComparator() {
return tree.comparator;
}

}

static final class DescendingKeySpliterator<K,V>
extends TreeMapSpliterator<K,V>
implements Spliterator<K> {
DescendingKeySpliterator(TreeMap<K,V> tree,
TreeMap.Entry<K,V> origin, TreeMap.Entry<K,V> fence,
int side, int est, int expectedModCount) {
super(tree, origin, fence, side, est, expectedModCount);
}

public DescendingKeySpliterator<K,V> trySplit() {
if (est < 0)
getEstimate(); // force initialization
int d = side;
TreeMap.Entry<K,V> e = current, f = fence,
s = ((e == null || e == f) ? null : // empty
(d == 0) ? tree.root : // was top
(d < 0) ? e.left : // was left
(d > 0 && f != null) ? f.right : // was right
null);
if (s != null && s != e && s != f &&
tree.compare(e.key, s.key) > 0) { // e not already past s
side = 1;
return new DescendingKeySpliterator<>
(tree, e, current = s, -1, est >>>= 1, expectedModCount);
}
return null;
}

public void forEachRemaining(Consumer<? super K> action) {
if (action == null)
throw new NullPointerException();
if (est < 0)
getEstimate(); // force initialization
TreeMap.Entry<K,V> f = fence, e, p, pr;
if ((e = current) != null && e != f) {
current = f; // exhaust
do {
action.accept(e.key);
if ((p = e.left) != null) {
while ((pr = p.right) != null)
p = pr;
}
else {
while ((p = e.parent) != null && e == p.left)
e = p;
}
} while ((e = p) != null && e != f);
if (tree.modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}

public boolean tryAdvance(Consumer<? super K> action) {
TreeMap.Entry<K,V> e;
if (action == null)
throw new NullPointerException();
if (est < 0)
getEstimate(); // force initialization
if ((e = current) == null || e == fence)
return false;
current = predecessor(e);
action.accept(e.key);
if (tree.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}

public int characteristics() {
return (side == 0 ? Spliterator.SIZED : 0) |
Spliterator.DISTINCT | Spliterator.ORDERED;
}
}

static final class ValueSpliterator<K,V>
extends TreeMapSpliterator<K,V>
implements Spliterator<V> {
ValueSpliterator(TreeMap<K,V> tree,
TreeMap.Entry<K,V> origin, TreeMap.Entry<K,V> fence,
int side, int est, int expectedModCount) {
super(tree, origin, fence, side, est, expectedModCount);
}

public ValueSpliterator<K,V> trySplit() {
if (est < 0)
getEstimate(); // force initialization
int d = side;
TreeMap.Entry<K,V> e = current, f = fence,
s = ((e == null || e == f) ? null : // empty
(d == 0) ? tree.root : // was top
(d > 0) ? e.right : // was right
(d < 0 && f != null) ? f.left : // was left
null);
if (s != null && s != e && s != f &&
tree.compare(e.key, s.key) < 0) { // e not already past s
side = 1;
return new ValueSpliterator<>
(tree, e, current = s, -1, est >>>= 1, expectedModCount);
}
return null;
}

public void forEachRemaining(Consumer<? super V> action) {
if (action == null)
throw new NullPointerException();
if (est < 0)
getEstimate(); // force initialization
TreeMap.Entry<K,V> f = fence, e, p, pl;
if ((e = current) != null && e != f) {
current = f; // exhaust
do {
action.accept(e.value);
if ((p = e.right) != null) {
while ((pl = p.left) != null)
p = pl;
}
else {
while ((p = e.parent) != null && e == p.right)
e = p;
}
} while ((e = p) != null && e != f);
if (tree.modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}

public boolean tryAdvance(Consumer<? super V> action) {
TreeMap.Entry<K,V> e;
if (action == null)
throw new NullPointerException();
if (est < 0)
getEstimate(); // force initialization
if ((e = current) == null || e == fence)
return false;
current = successor(e);
action.accept(e.value);
if (tree.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}

public int characteristics() {
return (side == 0 ? Spliterator.SIZED : 0) | Spliterator.ORDERED;
}
}

static final class EntrySpliterator<K,V>
extends TreeMapSpliterator<K,V>
implements Spliterator<Map.Entry<K,V>> {
EntrySpliterator(TreeMap<K,V> tree,
TreeMap.Entry<K,V> origin, TreeMap.Entry<K,V> fence,
int side, int est, int expectedModCount) {
super(tree, origin, fence, side, est, expectedModCount);
}

public EntrySpliterator<K,V> trySplit() {
if (est < 0)
getEstimate(); // force initialization
int d = side;
TreeMap.Entry<K,V> e = current, f = fence,
s = ((e == null || e == f) ? null : // empty
(d == 0) ? tree.root : // was top
(d > 0) ? e.right : // was right
(d < 0 && f != null) ? f.left : // was left
null);
if (s != null && s != e && s != f &&
tree.compare(e.key, s.key) < 0) { // e not already past s
side = 1;
return new EntrySpliterator<>
(tree, e, current = s, -1, est >>>= 1, expectedModCount);
}
return null;
}

public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
if (action == null)
throw new NullPointerException();
if (est < 0)
getEstimate(); // force initialization
TreeMap.Entry<K,V> f = fence, e, p, pl;
if ((e = current) != null && e != f) {
current = f; // exhaust
do {
action.accept(e);
if ((p = e.right) != null) {
while ((pl = p.left) != null)
p = pl;
}
else {
while ((p = e.parent) != null && e == p.right)
e = p;
}
} while ((e = p) != null && e != f);
if (tree.modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}

public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
TreeMap.Entry<K,V> e;
if (action == null)
throw new NullPointerException();
if (est < 0)
getEstimate(); // force initialization
if ((e = current) == null || e == fence)
return false;
current = successor(e);
action.accept(e);
if (tree.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}

public int characteristics() {
return (side == 0 ? Spliterator.SIZED : 0) |
Spliterator.DISTINCT | Spliterator.SORTED | Spliterator.ORDERED;
}

@Override
public Comparator<Map.Entry<K, V>> getComparator() {
// Adapt or create a key-based comparator
if (tree.comparator != null) {
return Map.Entry.comparingByKey(tree.comparator);
}
else {
return (Comparator<Map.Entry<K, V>> & Serializable) (e1, e2) -> {
@SuppressWarnings("unchecked")
Comparable<? super K> k1 = (Comparable<? super K>) e1.getKey();
return k1.compareTo(e2.getKey());
};
}
}
}
}